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NWP objectives of Carpe Diem

e To focus on flood in small, medium and
localised urban catchments ( 100 — 5000
(km)?

e To improve the numerical prediction of rain-
fall (model grid resolution Az ~ 5 — 10 km,
forecast lead time 0 - 48 h).

e To assimilate radar doppler velocity (and
spectral width) in both clear and precipita-
tion filled atmosphere into NWP models.



What is needed to improve precipitation
forecasts in severe weather events?

1. Basic forecasting approach

e Deterministic (traditional) NWP or proba-
bilistic (ensemble) NWP?

e Global models and/or Synoptic scale LAM
and/or storm scale LAM?

e Use of post-processing techniques (statis-
tical down-scaling, Kalman-filtering) 7



2. Model resolution and model dynamics?

Depending on phenomena:

e Synoptic scale disturbances, Az g 10km, hydro-
static equations

e Convective storms, Az < 5km, non-hydrostatic equa-
tions

e Orographic and coastline enhancements, Az $ 5km,
non-hydrostatic equations
Depending on catchment size:
e ~ 10000(km)?, Az Z 10km hydrostatic equations

e ~ 100(km)?, Az 5 5km non-hydrostatic equations
or possibly Az g 10km combined with post-processing

Something learnt from the TELFLOOD:

e Filtering of orography is needed to avoid spurious
noise!



3. Model physical parameterizations

Parameterizations that are important for pre-
Cipitation forecasts:

e Condensation and clouds, cloud microphysics (wa-
ter phase, droplet spectra)

e Convection. Old convection schemes of Kuo-type,
developed for grid resolution ~ 100 km, are being
replaced by mass flux schemes (e.g. Kain-Fritsch).
At storm scale resolutions, explicit — resolved con-
vection has to be taken into account.

e Surface and soil processes. A canopy layer and soil
characteristics have to be introduced and variations
of soil moisture become important. Detailed de-
scription of subgrid-scale variations of surface and
soil characteristics (tiling) may need to be intro-
duced.

e Vertical turbulent transports, i.e. the link between
the surface fluxes and convection, condensation,
clouds and precipitation, need to be improved. Ex-
plicit forecasting of TKE (Turbulent Kinetic En-
ergy) is being introduced. Horizontal turbulent trans-
ports may need to be considered at storm-scale res-
olution.



4. Initial data needs

The following initial data variables may be con-
sidered high priority:

e Vertical profiles of atmospheric wind, water vapour
and temperature. In accordance with geostrophic
adjustment theory, wind is considered more impor-
tant than temperature at high horizontal resolution.

e Surface pressure

e Soil and surface conditions, in particular soil mois-
ture.

e Atmospheric aerosoles.

Cloud variables are more difficult to assimilate but may

become increasingly important when assimilation tech-

niques improve and when cloud parameterization schemes
become more realistic.



5. Observations

Traditional observations:

e Radiosonde (temperature, wind, water vapour and
surface pressure)

e SYNOP, SHIP and DRIBU (surface only)

e Aircraft reports (wind and temperature)

Radar observations:
e Radial wind vectors, VAD profiles

o Reflectivity ~ 3D precipitation intensity (latent heat-
ing)

Satellite observations:

e Satellite sounding data, e.g. TOVS (temperature
and humidity profiles, precipitation)

e Cloud drift winds

e Scatterometer data (10 meter winds)

e Imager data (clouds, surface conditions)

e Ground-based GPS data (integrated water vapour)
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6. Data assimilation techniques

Various data assimilation techniques exist. It
IS not clear what will be the the best solution
for real-time high resolution precipitation fore-
casting. Several techniques will be compared
within Carpe Diem:

e Variational data assimilation, 3D-Var and
4D-Var.

e Continious assimilation with nudging.

e Use of output from standalone mesoscale
objective analysis schemes.



Variational data assimilation - formulation

Problems and critical issues are common to most data
assimilation techniques. We will briefly discuss these
within the framework of variational data asimilation.
We will first give a brief definition of the basic variational
data assimilation problem.

Minimize

J=h+Jo+ Jo=

(z(to) — zp(to))" B~ (z(to) — zp(to))+
(Y() — Hz(t))"R™* (Y (t) — Hz(t)) + Je
over a time period tg <t < t; where

Jp measures the distance between the model initial state
vector x(tp) and a model background state vector x; (o),
for example a short range forecast.

J, measures the distance between the model state z(t)
and available observations Y (¢) from the time-period.
The model state z(t) is obtained through integration
of the NWP forecast model M from the initial time ¢to,

z(t) = M (z(to)).

J. is included to prevent un-realistic high frequency os-
cillations (gravity wave contraint).

B is a matrix containing the covariances of the back-
ground model state errors, R is the matrix of the co-
variances of the observation errors and H is the observa-
tion operator projecting the model state vector on the
observed quantities.



Variational data assimilation - critical
Issues

e Variational data assimilation schemes are often de-
veloped with 4D-Var as the ultimate goal. 3D-Var
iS a natural step towards 4D-Var. 4D-Var has not
yet proven to be affordable and cost-efficient for
short-range mesoscale NWP applications.

e 3D-Var and, in particular, 4D-Var are often applied
in their incremental form. This means that the
assimilation increment éx = x — x, is applied at
a coarser spatial resolution than the model back-
ground xz,. Furthermore, a tangent-linear model
may be applied for the forecast of the assimila-
tion increment over the time period of the assim-
ilation, and a tangent-linear observation operator
may be applied to the assimilation increment, while
the full non-linear forecast model and the full non-
linear observation operator are applied to the model
background field in full spatial resolution. The in-
cremental approach makes the computational task
more tractable.

e Important forecast model non-linearities, in partic-
ular with regard to physical processes at high res-
olution in space and time, may prohibit the use of
the incremental approach and make application of
4D-Var less tractable.
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e Important non-linearities in the observation opera-
tors, for example those for satellite radiance data,
may necessitate the application of several "outer
loops” with the full non-linear observation opera-
tors during the minimization.

e A basic limitation of 4D-Var is the intrinsic assump-
tion of a perfect forecast model.

e The huge dimension of the background error co-
variance matrix B necessitates introduction of sim-
plifications, that may obstruct the efficiency of 3-
4D-Var in comparison with more simplified and lo-
calised assimilation techniques. Common simpli-
fications of B include assumption of homogeneity
and isotropy with regard to spatial correlations and
near-geostrophy. Attepts to include flow-dependency
in B have so far had very limited success. (The
present project will include an attept for online es-
timation of the diagonal of B — the background
error variances.

e High-resolution data, like radar data and satellite
image data, need to be pre-processed to "super-
observations” or to be spatially thinned. Pre-processing
may include a gross error check, e.g. by comparison
with the background field. The variational assimila-
tion may include a variational quality control, taking
account of non-Gaussian observation errors.



The observation error covariance matrix is often
assumed to be a diagonal matrix, thus observation
errors are assumed to be un-correlated. This is
likely to be less valid for remote sensing data.

It is a general experience that remote sensing obser-
vations often have to be modified by bias correction
schemes.

It is preferrable that assimilation control variables
have Gaussian statistical distributions. Various trans-
forms may be applied, e.g. for the moisture vari-
able, to come closer to Gaussian distributions.

Pre-conditioning is important to get a faster con-
vergence of the minimization. A first attempt can
be to diagonalize the background error covariance
matrix B by an appropriate transformation of the
model state vector.

Application of a digital filter as a weak constraint
has recently had some success in minimizing fast
model oscillations and model spin-up.



Work Package 2: Extraction of
information from Doppler winds

e SMHI will develope a pre-processing of Doppler wind
data to "super-observations”. The pre-processing
will include ambiguity removal and 3D volume av-
erages of radial winds, retaining characteristics of
the original polar data, and error estimation.

e University of Essex and ARPA/SMR will derive both
componehts of the wind field from overlapping radars
(relaxation of the homogeneity assumption of VAD).

e DLR will examine clear air radar echoes for obtain-
ing wind profiles and boundary layer characteristics.
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Work Package 3: Data Assimilation

e SMHI and FMI will develope observation operators
for radar radial winds in 3D-Var and 4D-Var. The
model wind profile will be projected on the radial
winds and the corresponding tangent-linear and ad-
joint operators will also be developed. To avoid
problems with influence from observed vertical ve-
locities, low elevation radar angles will be treated
first. Quality control algorithms will be developed
and observation error statistics will be estimated.
Data impact studies will be carried out.

e University of Barcelona will apply continuous data
asimilation and nudging for radar, satellite and con-
ventional observations.
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Work Package 4: Assessment of NWP
model uncertainty including model errors.

e PROGEA, in collaboration with SMHI and Univer-
sity of Barcelona, will set up a Kalman filter ap-
proach based upon optimality conditions in terms
of independence in time of the innovation process
(IIP) and compare it with results from the Maxi-
mum Likelihood/Simplified Kalman Filter (ML /SKF)
approach.

e SMHI will investigate the possibilities for online es-
timation of forecast error standard deviations (by
ML /SKF of KF techniques) to be used within the
framework of variational data assimilation.
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Work Package 5: Assessment of
improvements in NWP

e ARPA/SMR and CNR/ISAO will identify and ex-
amine severe weather cases and study the impact
of remote sensing data for these cases.

e ARPA/SMR will develope and test a Very Short-
range Forecasting (VSRF) system. A mesoscale
analysis (LAPS) will be linked to the (ETA) model.
The impact of remote sensing data will be studied.

e CNR/ISAO will introduce satellite radiance data to
the mesoscale analysis: Meteosat, NOAA AVHRR,
ATOVS and MSG data. Cloud droplet effective
radius, cloud ice content, rainfall estimates and
mesoscale organization will be studied.
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Planned collaboration within Area 1:

U. Essex and ARPA/SMR will collaborate on dual
doppler wind retrieval. (WP2)

SMHI and FMI will develope variational assimilation
of radar radial winds together. (WP3)

PROGEA, SMHI and U. Barcelona will collaborate
on model error assessment. (WP4)

ARPA/SMR and CNR/ISAQO will collaborate on mesoscale
analysis. (WP5)
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Suggested further collaboration:

Comparison of standalone dual doppler retrieval (WP2)
with variational assimilation from overlapping radars
(WP3).

Comaparison of 3D-Var/4D-Var (WP3), nudging
(WP3) and VSFR (WP5) on a common severe
weather case (WP5).

Assessment of the impact of radar data on the re-
sults of the total model chain ( (Radar—=NWP) —
(Radar — Flood model) ) (Area 1, 2 and 3)

Assessment of the combined effect of several types
of remote sensing data, e.g. AMSU-B moisture,
GPS moisture, MODIS moisture and Soil moisture
assimilation. Interaction with other EU projects for
this purpose.
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